
《面积计算》教案
作为一名教学工作者,通常会被要求编写教案,教案是教学活动的依据,有着重要的地位。我们应该怎么写教案呢?下面是小编整理的《面积计算》教案,欢迎大家分享。
《面积计算》教案1导学内容
导学内容(西师版)三年级下册第42页例3。
教学目标
1.结合具体情景,能借助长方形面积计算方法推导出正方形面积计算公式。
2.能运用正方形面积计算公式解决简单的实际问题。
3.培养学生的归纳类比能力和应用能力。
导学重难点
引导学生类推出正方形面积计算公式。
导学过程
一、创设情景,引出问题
通过创设情景:小明的家,显示家里的电视机。小明的妈妈说:“小明,这张方巾的边长是9分米,把它用来遮电视机。”小明说:“电视机的荧光屏长56厘米,宽42厘米。”
教师:你能提出哪些数学问题?
引导学生提出:
(1)电视机荧光屏的面积是多少?
(2)方巾的面积是多少?
二、自主探索,感悟方法
教师:你能根据上节课学习的长方形的面积计算公式解决这两个问题吗?
学生独立解决后交流。
学生1:计算电视机荧光屏的面积可以直接根据长方形的面积公式计算。即56×42=2352(cm2)。
学生2:方巾是正方形,正方形的`面积计算公式没学过。
教师引导:想一想,长方形与正方形有什么联系?
学生3:可以把正方形的边长分别看成长方形的长和宽,由此,方巾的面积通过9×9=81(dm2)来计算得到。
三、归纳概括,得出公式
教师:根据刚才的讨论,想一想可以怎样计算正方形的面积?
(学生回答,教师板书:正方形的面积=边长×边长)
学生说一说正方形的面积与什么有关系。
四、巩固运用
(1)完成第43页课堂活动第2题。
(2)完成第43~44页练习七第1,3,4题。
(3)让有能力的同学做第44页的思考题。
五、课堂
教师:同学们,通过今天的学习,你又有什么新的收获?还有什么问题?
《面积计算》教案2教学背景:
组合图形面积的计算是平面图形知识在小学阶段的综合应用。计算一个组合图形的面积,有时可以有多种方法,为了提高学生的解题能力,除了让学生加强练习以外,还应教绐他们一定的解题技巧。经过多年的教学实践,我收集和整理了一些关于组合图形面积的计算方法和技巧。如割补法、平移法、等分法、等积变形法、翻折法、旋转法、重叠法等等。我们要根据图形的特征、已知条件,以及整体与部分的关系,选择最佳解法。
本节微课主要学习割补法、等积变形、旋转法等三种方法。
教学目标 :
1、 知道求组合图形的面积就是求几个图形面积的和(或差);能正确地进行组合图形面积计算,并能灵活思考解决实际问题。
2、 注重对组合图形的分析方法与计算技巧,有利于提高学生的识图能力、分析综合能力与空间想象能力。
教学方法:
讲解法、演示法
教学过程:
一 、割补法
这类方法一般是从组合图形中分割成几种不同的基本图形,这类图形的阴影部分面积就是求几个基本图形面积之和(或者差)。
Ppt演示变化过程,并出示解题过程。
二、等积变形法。
这类方法是将题中的条件或问题替换成面积相等的.另外的条件或问题,使原来复杂的图形变为简单明了的图形。
Ppt演示变化过程,并出示解题过程。
三、旋转法。
这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图。
Ppt演示变化过程,并出示解题过程。
四、小结方法
求组合图形面积可按以下步骤进行
1、弄清组合图形所求的是哪些部分的面积。
2、根据图中条件联想各种简单图形的特征,看组合图形可以分成几块什么样的图形,能否通过割补、等积变形、旋转等方法使图形化繁为简。
《面积计算》教案3【教学内容】教材第89~90页例题、“试一试”和“想想做做”。
【教学目标】
1、使同学在解决有关面积计算的实际问题的过程中,学会用画直观示意图的方法整理相关信息,能借助所画的示意图分析实际问题中的数量关系,确定解决问题的正确思路。
2、使同学在对解决实际问题过程的不时反思中,感受用画示意图的方法整理信息对于解决问题的价值,体会到画图整理信息室解决问题的一种常用战略。
3、使同学进一步积累解决问题的经验,增强解决问题的战略意识,获得解决问题的胜利体验,提高学好数学的信心。
【教学过程】
一、导入新课。
1.
看图口头列式计算。
(1)出示图:一个长方形,长是6厘米,宽是4厘米,这个长方形的面积是多少平方厘米?
(2)出示图:一个长方形的面积是18平方厘米,长是9厘米,宽是多少厘米?
提问:已知长方形的长和宽,长方形的面积怎么求?已知长方形的面积和长呢?面积和宽呢?
2.出示长方形排球场图,提问:知道这是什么地方吗?排球场是什么形状的?
你能大致地画出这个排球场的示意图吗?已知这个排球场的长是18米,宽是9米。同学动手操作。
提问:谁来说一说,画图时要注意什么?
3.谈话:刚才我们画出了这个排球场的示意图,也解答了简单的求长方形面积的问题。这节课我们将学习运用画图的战略来解决稍微复杂的面积计算的问题。(板书课题:用画图的战略解决有关面积计算的问题)
二、教学新课
1.教学例题
(1)出示例题,同学齐读题目,提问:这道题目已知什么?要求什么?
(2)提问:你觉得像刚才这样介绍这道题目后,他人能将题目的条件和问题弄得很清楚吗?数量关系明显吗?这个时候,我们可以根据题目的条件和问题,画出一个示意图,就可以将题意表达的更加清楚。
怎样画图呢?先画出原来的长方形花圃,告诉我们长8米,我们就画一条线段表示长8米,有没有说宽是多少?既然没说宽多少,我们就大约的画出宽,但是宽一定比长怎么样?
谁来读一读题目中的另外两个条件(指名读条件),长增加3米,面积就增加18平方米,这些已知条件,应该怎样在示意图中画出来呢?3米在哪里呢?大约画多长?哪一局部是18平方米?谁到前面来指一指,再画出来、写清楚。
指名板演,全体同 ……此处隐藏29195个字……相互启发和教师的及时点拨与引导。]
3、汇报、交流、:
师:不少同学已经成功对自己的假设进行了验证,请哪个小组先来展示你们验证的结果和方法?(学生借助实物投影展示各自的方法和结论)
生1:我们是将两个完全一样的梯形转化为一个平行四边形的,这个平行四边形的底是梯形上下底的和,高就是梯形的高,而梯形的面积只有平行四边形面积的一半。
因为:平行四边形的面积=底×高,所以:梯形的面积=(上底+下底)×高÷2。
(掌声)教师表扬。
生2:我们组将梯形分成了两个三角形。因为:小三角形的面积=上底×高÷2,大三角形的面积=下底×高÷2,所以:梯形的面积=上底×高÷2+下底×高÷2 = (上底+下底)×高÷2。
生3:我们小组认为:将梯形上下对折,沿折痕剪开后所得的两个小梯形也能拼成一个平行四边形
这个梯形的底就是梯形的上下底的和,高就是梯形的高的一半,因为:平行四边形的面积=底×高,所以:梯形的面积=(上底+下底)×(高÷2)。[教学,尽在天下教!]
生4:我们小组沿着梯形的两条高,将梯形分成了一个长方形和两个三角形,长方形的面积可以求出,但三角形的面积无法求出,因为三角形的底不知道。
生5:我认为可以求出,但不知是否正确?
师:说说看,说错了也没问题。
生5继续:单独求其中一个三角形的面积比较困难,能不能将这两个三角形合并成一个大的三角形呢?因为它们都是直角三角形,而且高又相等。
师:你很爱动脑筋,想法也很好,请同学们按照这位同学的思路去剪一剪,拼一拼,看看三角形的底与梯形有没有关系?
生6:我发现了,这个三角形的底应该等于梯形的下底与上底的差。这样,长方形的面积为“上底×高”,两个三角形的面积为“(下底-上底)×高÷2”,合起来再化简即得“梯形的面积﹦(上底+下底)×高÷2”。
生7:我们小组将梯形右下方的'小三角形剪下,再翻转上去,拼成一个平行四边形。平行四边形的底相当于梯形上下底和的一半,平行四边形的高相当于梯形的高。所以“梯形的面积=(上底+下底)÷2×高”。
……
师:现在我们来一下,通过我们刚才的观察,比较,那么在这些方法中,你最欣赏师:会用字母表示吗?
生:S=(a+b)h÷2
师:说一说各字母的意义。
[点评:通过动手操作,大胆实践,探索出多种方法来推导梯形面积的计算公式,引导学生及时交流,展示个性化的研究思路与成果,整个引导过程都充分发挥了学生的主体作用,使学生真正经历了“操作、观察、”的过程,经历了一个数学再创造的过程,既品尝了成功的体验,又激发了学生的实践欲望和创新能力。]
三、在实践中拓展、延伸
1、生尝试练习,帮助理解“横截面”的意义。
2、说一说计算梯形的面积应注意什么?
3、想一想,算一算:
出示圆木图,求圆木的根树。
4、计算:1+2+3+4+5+6+7+8+9= (想一想,怎样算比较简便)
[点评:有层次、有坡度、有趣味的练习,既能巩固所学的新知,又有利于学生灵活运用所学知识解决生活中的数学问题,使学生感到数学是有用的,为培养学生的应用意识起到了较好的促进作用。]
四、全课:
1、通过这节课的学习,每个同学都有很大收获,谈谈你的收获。
2、还有什么不懂的吗?
五、作业:(略)
教后反思:
探索新型情感性课堂教学,还学生的主体地位。
新的《数学课程标准》多处强调:“学生是数学学习的主人”,“数学教学,要紧密联系学生的生活环境,从学生的生活经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。” 本课教学中尊重每一位学生,允许不同的学生从不同的角度认识问题,采用不同的方式表达自己的想法,用不同的知识和方法解决问题。《梯形面积的计算》一个,从课开始的自由操作联想,到公式推导的全过程,到公式的应用,自始至终都能将学生放到主体的地位上。通过学生的实验、操作、交流,让学生构建梯形与长方形、平行四边形、三角形之间的联系,从而正确的推导出梯形面积的计算公式,并灵活的应用于生活实际。
《面积计算》教案15教学内容:教科书第90页的例题,完成例题下面的”做一做“和练习二十一的题目。
教学目的:使学生初步了解组合图形面积的计算方法,会计算一些比较简单的组合图形的面积。
教具准备:将复习中的图画在小黑板上,再将教学例题时所用的图也画在小黑板上。
教学过程:
一、复习
问:第一个图形是什么形?它的面积怎样计算?(学生回答,教师在长方形下面板书:S=ab,其他图形,学生分别回答后,教师在每个图的下面写出相应的计算面积的公式。)
二、新授。
1、教学例题。
教师:组合图形就是由我们已学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。在实际生活中有进需要计算这些组合图形的面积。例如有些房子侧面墙的形状是这样的:(出示小黑板)
问:这个图形的面积我们过去学过吗?(让学生仔细观察一下)
我们虽然没有学过计算这个图形面积的计算公式,可是能不能把这个图形分成几个我们已经学过的图形呢?怎样分?(指名学生到黑板前画一画,教师标出相关尺寸。)
现在把这个图形分成了一个三角形和一个正方形,它的面积怎样计算?(学生看教科书第90页上的例题,把书上的算式填完整。)
:在实际生活中我们见到的物体表面,有很多图形是由我们已经学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。计算这些图形的面积,一般是先把它们分成已学过的简单图形,分别计算出各个简单图形的面积,然后再把它们合起来,便可以求整个组合图形的面积。)
2、做例题下面”做一做“中的题目。
先让学生读题。
问:“这块菜地可以看成是由哪些图形组合而成?”
让每个学生在练习本上列式计算。做完后集体核对。
三、巩固练习。
做练习二十一中的题目。
第3题,投影片出示一面少先队的中队旗。
问:要计算这面中队旗的面积,怎样分成几个我们已经学过的'图形呢?你是怎样做的?(让几个学生说一说自己的想法。
第4题,先让学生读题,再问:
“这个机器零件的横截面图的面积怎样计算?”(让几个学生说一说自己的想法)
“根据题目中标出的长度,怎样计算比较简便?”(用长方形的面积减去梯形缺口的面积。)
学生在练习本上列式计算,再集体订正。
四、作业。
练习二十一的第1题和第2题。
课后:



