《组合图形的面积》教案

时间:2025-12-31 04:30:10
《组合图形的面积》教案

《组合图形的面积》教案

作为一名为他人授业解惑的教育工作者,可能需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。如何把教案做到重点突出呢?下面是小编整理的《组合图形的面积》教案,欢迎大家分享。

《组合图形的面积》教案1

教学目标:

1、使学生掌握计算环形的面积的方法,并能准确掌握和计算其他一些简单组合图形的面积。

2、进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的自信心。

教学过程:

一、教学例10。

1、出示圆环图形,这是什么图形?你知道吗?

2、出示例10题目,读题。

师:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。

小组讨论,确立解题思路。

交流:(1)求出外圆的面积(2)求出内圆的面积(3)计算圆环的面积

3、学生独立操作计算。

4、组织交流解题方法,提问:有更简便的计算方法吗?

小结:求圆环的面积一般是把外圆的面积减去内圆的面积,还可以利用乘法分配率进行简便计算。

二、“试一试”

1、出示题目和图形,学生读题。

师:(1)这个组合图形是有哪些基本图形组合而成的?

(2)半圆和正方形有什么相关联的地方?确:正方形的.边长就是半圆的直径。

(3)思考一下,半圆的面积该怎样计算?

2、学生独立计算。

3、交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以2。

小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的。

三、巩固练习。

1、“练一练”。

思考:(1)求涂色部分的面积,需要计算哪些基本图形的面积?

(2)计算这些基本图形的面积分别需要哪些条件?

(3)第一个图形,两个基本图形有什么联系?第二个图形呢?

明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。

学生独立完成,并全班反馈交流。

2、练习十九第6~9题。

(1)第6题。先学生独立完成,再交流。

交流重点:

a、每个组合图形需要测量图中哪些线段的长度?

b、求每个图色部分面积时,方法是怎样的?

c、计算中有没有注意运用简便的方法。

(2)第7题。学生根据图形作出直观的判断,并说说直观判断的方法。然后通过计算检验所作出的判断。

(3)第8题。学生读题,观察示意图。

提:

a、要求小路的面积实际求求什么?

b、求圆环的面积,必须知道什么条件?

c、题目中告诉了我们哪些条件?还有什么条件是要我们求的?

学生独立解答,并全班交流。

(4)第9题。

通过画辅导线的方法,来估计每种花卉所占圆形面积的几分之几,在让学生计算每种花卉的种植面积。

(5)思考题。学生先充分思考,再组织交流。

四、读一读“你知道吗?”,并算一算。

《组合图形的面积》教案2

1. 教学目标

1、运用适当的分割拼补的方法明 确图形的组合关系。

2、利用已经学过的基本图形面积计算公式正确计算出组合图形的面积。

2. 教学重点/难点

教学重点:

将组合图形分割、拼补成几个基本图形,而这些基本图形是能用图形中标出的长度计算出面积的。

教学难点:

合理 利用图形中标出的长度找出简单合理 的分割拼补方法,以使组合图形面积计算便捷。

3. 教学用具

教学课件

4. 标签

教学过程

一、 复习引入

1、 我们已学过哪些平面图形?

2、 说出它们的面积计算公式 ?

3、 谁能用上面两个或三个拼成一个图形?

4、 揭题:组合图形的`面 积

二、 探究新知

1、 出示:下面是一个组合图形,你会求它的面积吗?

1、 小组讨论

2、 小组汇报,集体交流

三、 巩固练习

1、求组合图形的面积

课堂小结

总结

这节课你有什么收获?

课后习题

作业设计

《组合图形的面积》教案3

教学内容:

北师大版教科书第九册第75~76页的内容

教学目标:

1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、能运用所学的知识,解决生活中组合图形的实际问题。

4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。

重点、难点

重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个小图形所需的条件。

难点:如何选择有效的计算方法解决问题。

教具准备:

多媒体课件和组合图形图片。

教学过程:

一.引出概念,揭示主题。

1.你能看出以下图形是由那些基本图形组成的吗?

2.像这样由两个或两个以上基本图形组合而成的图形我们把它称为组合图形(板书“组合图形”)画一画,分一分。

二.新授。

这是我家的客厅平面图!(课件出示客厅的平面图。)

1、估计地板的面积

师:请同学们先估一估这个地板的面积有多大呢?

2、探索不同方法。

师:同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证。请同学们观察这个图形,咱们学过怎样求它的面积?(停顿)那我们该怎么办?请把你的想法用虚线在图中表示出来。

生动手画图。

教师有选择的展示方法。

3.师总结分割法和添补法。

其实不管是用分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成以学过的平面图形。

4.计算:

现在你会计算这个组合图形的.面积吗?

要算每个小图形的面积分别需要哪些条件?请找一找,并标出来。< ……此处隐藏17135个字……明这些图形分别是由几个我们已经学过的简单图形组成的,我们把它们叫做组合图形。板书课题:组合图形的面积计算)

(设计意图:通过复习学过的平面图形面积计算公式,巩固对简单图形面积计算方法的理解,为学习组合图形的面积计算做好铺垫。联系生活实际,通过投影展示多种组合图形,引导学生观察,用问题激发学生的求知欲,使揭示课题水到渠成。)

二、观察分析,探索方法

1.认识组合图形。

(1)在组合图形中找一找简单图形。

师:在实际生活中,我们见到的物体表面有许多是由我们已经学过的长方形、正方形、平行四边形、三角形、梯形等基本图形组成的组合图形。现在请同学们认真观察屏幕上的组合图形,找一找房子侧面墙、多边形花坛、中队旗、七巧板拼成的长方形各由哪些简单图形组成?

(学生边说,教师边用彩色笔在投影片上把前面三种组合图形分割成几个简单图形。)

(2)找一找生活中见过的组合图形。

师:在日常生活中,同学们还见过哪些物体的表面是组合图形?它们是由哪些简单图形组成的?

(3)小组议一议,画一画组合图形。

(4)小结:组合图形是由几个简单图形组成的平面图形。

(设计意图:通过引导学生观察、寻找组合图形中的简单图形,寻找日常生活中的组合图形,引导学生议一议,画一画。在此基础上再引导学生归纳、概括组合图形的含义,建立组合图形的概念,使学生对组合图形有了清晰的.认识。)2.探索组合图形面积的计算方法。

师:同学们认识了组合图形,接下来我们探索组合图形面积的计算方法。

(1)投影例题:张大叔有一块菜地,形状如下图。这种菜地的面积是多少平方米?

(2)探索计算方法。

教师发给每个学生印有上图的练习纸,按下列要求完成:

①想一想:这个图形是由哪几个简单图形拼成的?

②画一画:画上虚线,把组合图形分割成几个简单图形,看看谁的方法多?谁的方法好?

③找一找:寻找计算组合图形面积的条件。

④算一算:学生独立尝试计算组合图形的面积。

⑤说一说:学生汇报交流,先说一说把组合图形分割成哪几个简单图形,再利用课件展示分割过程,最后投影展示学生的不同计算方法。

方法一:求一个梯形和一个长方形面积的和。

(4+8)(10-5)2+54

=30+20

=50(m )

方法二:求一个梯形和一个三角形面积的和。

(5+10)42+8(10-5)2

=30+20

=50(m )

方法三:求一个三角形和一个长方形面积的和。

(10-5)(8-4)2+104

=10+40

=50(m )

方法四:求两个三角形面积的和。

1082+542

=40+10

=50(m )

方法五:从一个长方形的面积中减去一个梯形的面积。

108-(10+5)(8-4)2

=80-30

=50(m )

⑥议一议。组织讨论,比较算法。上面五种计算和思考方法有何异同?为什么有的用加法算,有的用减法算?比一比,哪种计算方法比较简便?

3.小结计算方法。

先把组合图形分解成学过的几个简单图形,然后寻找计算简单图形面积的条件,最后运用加、减法求出组合图形的面积。但要注意,分解图形时应当考虑计算方便且要有计算面积所必需的数据。

教师板书:合理分解(转化)寻找计算简单图形面积的条件计算简单图形的面积运用加、减法(求和或求差)。

(设计意图:通过让学生想一想、画一画、找一找、算一算,鼓励学生寻求不同的解题策略,运用不同的思路计算面积,培养学生思维的灵活性,让学生创造性地解决问题;通过学生说一说、议一议,交流各自的计算方法,拓宽计算组合图形面积的思路,明确计算组合图形面积时不仅可以用加法算,有时也需要用减法算;明确分解图形时要考虑尽量用简便的方法计算,促进算法优化;通过小结计算方法,使学生进一步理解和掌握组合图形面积的计算方法,并认识到根据已知条件对图形进行分解,不是任意分解都能计算,培养学生思维的深刻性;通过教师板书解题思路,渗透数学转化思想,提升学生的数学思维能力。)三、解决问题,发展能力

1.下面是少先队的中队队旗,做一面中队旗要用红布多少平方米?

师:先用虚线画一画,可以把它分割成哪些简单的图形?看看谁的方法多?

(1)让学生独立完成。学生一般能想出下面两种方法:

①求两个梯形面积的和。

②求一个长方形和两个三角形面积的和。

(2)组织小组交流,引导学生想出第三种方法:

从一个长方形的面积减去一个三角形的面积。

(3)评价小结。

师:同学们不但想出了多种计算方法,而且知道了计算组合图形的面积既可以是合并求和用加法,也可以是去空求差用减法。

2.下图是一种机器零件的横截面图,求出阴影部分的面积是多少平方毫米?

师:先观察这幅图,想一想可以怎样求阴影部分的面积?

(1)让学生独立完成。

(2)组织小组交流、讨论:怎样求(阴影部分)组合图形的面积,说说解题思路。为什么要用减法计算?

(3)反馈评价。

3.下图是教室的一面墙。如果砌这面墙每平方米用砖185块,一共需要多少块砖?

师:要求一共需要用多少块砖?需要知道哪些条件?怎样求这面墙的面积?

(1)让学生独立完成。

(2)组织小组交流。

(3)引导反馈评价。

(4)自己订正错误。

4.摆一摆,量一量,算一算。

(1)用七巧板中的四块拼成一个组合图形,看看可以拼成怎样的组合图形?

(2)想一想,还有别的组合方法吗?再动手拼一拼。

(3)说一说,你是用哪四个图形组合起来的?

(4)量一量,量出求组合图形需要的有关数据。

(5)算一算,计算出组合图形的面积。

(6)评一评,学生(可能)拼成以下几种组合图形,先展示观察,再引导学生评价。

(设计意图:《数学课程标准(修改稿)》在解决问题目标中提出:初步学会从数学的角度发现问题和提出问题,综合运用数学知识和其他知识解决简单的实际问题,发展应用意识和实践能力。根据课标这一理念,在巩固练习环节,设计了解决三道实际问题和一道摆摆、量量、算算的开放题,让学生独立思考,小组交流,动手操作,自主完成,相互评价,主动订正,旨在巩固所学知识,让学生进一步掌握组合图形面积的计算方法,发展学生的求异创新思维能力,培养学生分析问题和解决简单实际问题的能力。)

四、全课总结,情知共融

师:怎样计算组合图形的面积?通过这节课的学习,你有什么收获?

《《组合图形的面积》教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式