
二元一次方程教案
作为一名教职工,常常要写一份优秀的教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。优秀的教案都具备一些什么特点呢?以下是小编收集整理的二元一次方程教案,仅供参考,欢迎大家阅读。
二元一次方程教案1学习目标 :会运用代入消元法解二元一次方程组.
学习重难点:
1、会用代入法解二元一次方程组。
2、灵活运用代入法的技巧.
学习过程:
一、基本概念
1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数,。这种将未知数的个数由多化少、逐一解决的思想,叫做____________。
2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。
3、代入消元法的步骤:
二、自学、合作、探究
1、将方程5x-6y=12变形:若用y的式子表示x,则x=______,当y=-2时,x=_______;若用含x的式子表示y,则y=______,当x=0时,y=________ 。
2、在方程2x+6y-5=0中,当3y=-4时,2x= ____________。
3、若 的解,则a=______,b=_______。
4、若方程y=1-x的解也是方程3x+2y=5的解,则x=____,y=____。
5、用代人法解方程组 ①②,把____代人____,可以消去未知数______。
6、已知方程组 的解也是方程组 的`解,则a=_______,b=________ ,3a+2b=___________。
7、已知x=1和x=2都满足关于x的方程x2+px+q=0,则p=_____,q=________ 。
8、当k=______时,方程组 的解中x与y的值相等。
9、用代入法解下列方程组:
⑴ ⑵ ⑶
二、训练
1、方程组 的解是( )
A. B. C. D.
2、已知二元一次方程3x+4y=6,当x、y互为相反数时,x=_____,y=______;当x、y相等时,x=______,y= _______ 。
3、若2ay+5b3x与-4a2xb2-4y是同类项,则a=______,b=_______。
4、对于关于x、y的方程y=kx+b,k比b大1,且当x= 时,y= ,则k、b的值分别是( )
A. B.2,1 C.-2,1 D.-1,0
5、用代入法解下列方程组
⑴ ⑵
6、如果(5a-7b+3)2+ =0,求a与b的值。
7、已知2x2m-3n-7-3ym+3n+6=8是关于x,y的二元一次方程,求n2m
8、若方程组 与 有公共的解,求a,b.
二元一次方程教案2教学目标
1.会列二元一次方程组解简单的应用题并能检验结果的合理性。
2.提高分析问题、解决问题的能力。
3.体会数学的应用价值。
教学重点
根据实际问题列二元一次方程组。
教学难点
1.找实际问题中的相等关系。
2.彻底理解题意。
教学过程
一、引入。
本节课我们继续学习用二元一次方程组解决简单实际问题。
二、新课。
例1. 小琴去县城,要经过外祖母家,头一天下午从她家走到个祖母家里,第二天上午,从外外祖母家出发匀速前进,走了2小时、5小时后,离她自己家分别为13千米、25千米。你能算出她的速度吗?还能算出她家与外祖母家相距多远吗?
探究: 1. 你能画线段表示本题的数量关系吗?
2.填空:(用含S、V的`代数式表示)
设小琴速度是V千米/时,她家与外祖母家相距S千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米20xx年-20xx学年七年级数学下册全册教案(人教版)教案。
3.列方程组。
4.解方程组。
5.检验写出答案。
讨论:本题是否还有其它解法?
三、练习。
1.建立方程模型。
(1)两在相距280千米,一般顺流航行需14小时,逆流航行需20小时,求船在静水中速度,水流的速度
(2)420个零件由甲、乙两人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,还需3天完成。问:甲、乙每天各做多少个零件?
2.P38练习第2题。
3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。
四、小结。
本节课你有何收获?
二元一次方程教案3教学目标:
1.会用加减消元法解二元一次方程组.
2.能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组.
3.了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的'思想方法.
教学重点:
加减消元法的理解与掌握
教学难点:
加减消元法的灵活运用
教学方法:
引导探索法,学生讨论交流
教学过程:
一、情境创设
买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?
设苹果汁、橙汁单价为x元,y元.
我们可以列出方程3x+2y=23
5x+2y=33
问:如何解这个方程组?
二、探索活动
活动一:1、上面“情境创设”中的方程,除了用代入消元法解以外,还有其他方法求解吗?
2、这些方法与代入消元法有何异同?
3、这个方程组有何特点?
解法一:3x+2y=23①
5x+2y=33②
由①式得③
把③式代入②式
33
解这个方程得:y=4
把y=4代入③式
则
……此处隐藏16660个字……多少?你能用一元一次方程解决这个问题吗?
师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16
x=6,则胜6场,负4场
教师追问:你能根据问题中的等量关系列出二元一次方程组吗?
师生活动:学生回答:能.设胜x场,负y场.根据题意,得
我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4.显然这样的'方法需要一个个尝试,有些麻烦,能不能像解一元一次方程那样来求出方程组的解呢?
这节课我们就来探究如何解二元一次方程组.
设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,再二元一次方程组,为后面教学做好了铺垫.
问题2 对比方程和方程组,你能发现它们之间的关系吗?
师生活动:通过对实际问题的分析,认识方程组中的两个y都是这个队的负场数,由此可以由一个方程得到y的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。
师生活动:根据上面分析,你们会解这个方程组了吗?
学生回答:会.
由①,得y=10-x ③
把③代入②,得2x+(10-x)=16 x=6
设计意图:共同探究,体会消元的过程.
问题3 教师追问:你能把③代入①吗?试一试?
师生活动:学生回答:不能,通过尝试,x抵消了.
设计意图:由于方程③是由方程①,得来的,它不能又代回到它本身。让学生实际操作,得到体验,更好地认识这一点.
教师追问:你能求y的值吗?
师生活动:学生回答:把x=6代入③得y=4
教师追问:还能代入别的方程吗?
学生回答:能,但是没有代入③简便
教师追问:你能写出这个方程组的解,并给出问题的答案吗?
学生回答:x=6,y=4,这个队胜6场,负4场
设计意图:让学生考虑求另一个未知数的过程,并如何优化解法。
师生活动:先让学生独立思考,再追问.在这种解法中,哪一步最关键?为什么?
学生回答:代入这一步
教师总结:这种方法叫代入消元法。
教师追问:你能先消x吗?
学生纷纷动手完成。
设计意图:让学生尝试不同的代入消元法,为后面学习选择简单的代入方法做铺垫.
2. 应用新知,拓展思维
例 用代入法解二元一次方程组
师生活动,把学生分两组,一组先消x, 一组先消y,然后每组各派一名代表上黑板完成。
设计意图:借助本题,充分发挥学生的合作探究精神,通过比较,让学生自主认识代入消元法,并学会优选解法.
3.加深认识,巩固提高
练习 用代入法解二元一次方程组
设计意图:提醒并指导学生要先分析方程组的结构特征,学会优选解法。在练习的基础上熟练用代入消元法解二元一次方程组.
4.归纳总结,知识升华
师生活动,共同回顾本节课的学习过程,并回答以下问题
1. 代入消元法解二元一次方程组有哪些步骤?
2. 解二元一次方程组的基本思路是什么?
3.在探究解法的过程中用到了哪些思想方法?
4.你还有哪些收获?
设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力.
5. 布置作业
教科书第93页第2题
五、目标检测设计
用代入法解下列二元一次方程组
设计意图:考查学生对代入法解二元一次方程组的掌握情况.
二元一次方程教案15教学目的
1.使学生了解二元一次方程,二元一次方程组的概念。
2.使学生了解二元一次方程;二元一次方程组的解的含义,会检验一对数是不是它们的解。
3.通过引例的教学,使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性。
重点:了解二元一次方程、二元一次方程组以及二元一次方程组的解的含
难点;了解二元一次方程组的解的含义。
导学提纲:
1.什么叫一元一次方程?什么叫一元一次方程的解?怎样检验一个数是否是这个方程的解?
2.阅读教材问题1思考下列问题
⑴.能否用我们已经学过的知识来解决这个问题?
用算术法解答
用一元一次方程解答
解后反思:既然是求两个未知量,那么能不能同时设两个未知数?
⑵.此问题中有两个问题如果分别设为x、y,怎样列式呢?(完成教材中的表格)
⑶.对于方程x十y=73x+y=17请思考下列问题
①它们是一元一次方程吗?
②这两个方程有没有共同特点/若有,有河共同特点?
③类比一元一次方程的概念,总结二元一次方程的.概念
3.从教材中找出二元一次方程和二元一次方程组的概念(结合一元一次方程,二元一次方程对“元”和“次”作进一步的解释)
注意二元一次方程组的书写方式,方程组中的各方程中,同一个字母必须代表同一个量
4.与是否满足方程①与是否满足方程②类比一元一次方程的解总结二元一次方程组的解的概念
注意:(1)未知数的值必须同时满足两个方程时,才是方程组的解.若取,时,它们能满足方程①,但不满足方程②,所以它们不是方程组的解.
(2)二元一次方程组的解是一对数,而不是一个数,所以必须把与合起来,才是方程组的解.
5.思考讨论在方程组①②③④
⑤⑥中,属于二元一次方程组的有
达标检测:
1.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组:
(1)甲数的比乙数的2倍少7:_____________________________;
(2)摩托车的时速是货车的倍,它们的速度之和是200千米/时:________;
(3)某种时装的价格是某种皮装的价格的1.4倍,5件皮装比3件时装贵700元:______________________________.
2.下列方程是二元一次方程的是()
A、2x+x=1B、x-3yC、x+x-3=0D、x+y=2
3.下列不是二元一次方程组的是()
x+3y=5m+3m=152x+3x=0m+n=5
A、B、C、D、
2x-3x=3+=3-5y=02m+n=6
x=2
4.在方程3x-ky=0中,如果是它的一个解,则k的值为_______.
y=-3
5.若mxy+9x+3y=-9是关于x、y的二元一次方程,则m=_______n=_______.



