平行四边形教案

时间:2025-08-07 04:30:12
【精选】平行四边形教案3篇

【精选】平行四边形教案3篇

作为一无名无私奉献的教育工作者,时常会需要准备好教案,借助教案可以更好地组织教学活动。我们该怎么去写教案呢?下面是小编整理的平行四边形教案3篇,欢迎大家分享。

平行四边形教案 篇1

教学目标:

1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

3.对学生进行辩诈唯物主义观点的启蒙教育.

教学重点:理解公式并正确计算平行四边形的面积.

教学难点:理解平行四边形面积公式的推导过程.

学具准备:每个学生准备一个平行四边形。

教学过程:

1、什么是面积?

2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?

二、导入新课

根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

三、讲授新课

(一)、数方格法

用展示台出示方格图

1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?

:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

(二)引入割补法

以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

(三)割补法

1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

2、然后指名到前边演示。

3、教师示范平行四边形转化成长方形的过程。

刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

①先沿着平行四边形的高剪下左边的直角三角形。

②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

②这个长方形的长与平行四边形的底有什么样的关系?

③这个长方形的宽与平行四边形的高有什么样的关系?

教师归纳:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的`平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

5、引导学生平行四边形面积计算公式。

这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)

那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)

6、教学用字母表示平行四边形的面积公式。

板书:S=a×h,告知S和h的读音。

说明在含有字母的式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

(6)完成第81页中间的“填空”。

7、验证公式

学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。

条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

(四)应用

1、学生自学例1后,教师根据学生提出的问题讲解。

3、判断,并说明理由。

(1)两个平行四边形的高相等,它们的面积就相等()

(2)平行四边形底越长,它的面积就越大()

4、做书上82页2题。

四、体验

今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

五、作业

练习十五第1题。

六、板书设计

平行四边形面积的计算

长方形的面积=长×宽 平行四边形的面积=底×高

S=a×hS=ah或S=ah

课后反思:

平行四边形教案 篇2

教学内容:

义务教育六年制小学《数学》第九册P64-P66

教学目的:

1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积,数学教案-平行四边形面积计算。

2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。

3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

4、培养学生自主学习的能力。

教学重点:

掌握平行四边形面积公式。

教学难点:

平行四边形面积公式的推导过程。

教具、学具准备:

1、多媒体计算机及课件;

2、投影仪;

3、硬纸板做成的可拉动的长方形框架;

4、每个学生5张平行四边形硬纸片及剪刀一把。

教学过程:

一、复习导入:

1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)

2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)

3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边 ……此处隐藏1013个字……/p>

(2)BD为△ABC的内角平分线,CE为△ABC的外角平分线(如图3),则在图2、图3两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明.

(20xx年黑龙江省中考题)

思路点拨 图1中FG与△ABC三边的数量关系的.求法(关键是作辅助线),对寻求后两个图形中线段FG与△ABC三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础.

注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用.

【例5】 如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL= AE.

(20xx年天津赛区试题)

思路点拨 通过连线,将多边形分割成三角形、四边形,为多个中点的 利用创造条件,这是解本例的突破口.

注 需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的有效思考方法之一.

学历训练

1.BD、CE是△ABC的中线,G、H分别是BE、CD的中点,BC=8,则GH= .

(20xx年广西中考题)

2.如图,△ABC中、BC=a,若D1、E1;分别是AB、AC的中点,则 ;若 D2、E2分别是D1B、E1C的中点,则 :若 D3、E3分别是D2B、E2C的中点.则 ……若Dn、En分别是Dn-1B、En-1C的中点,则DnEn= (n≥1且 n为整数).

(200l年山东省济南市中考题)

3.如图,△ABC边长分别为AD=14,BC=l6,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是 .

4.如图, 梯形ABCD中,AD∥BC,对角线AC⊥BD,AC=5cm,BD=12cm,则该梯形的中位线的长等于 cm.

(20xx年天津市中考题)

5.如图,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,则EF+GH=( )

A.40 B.48 C 50 D.56

6.如图,在梯形ABCD中,AD∥BC,E、F分别是对角线BD、AC的中点,若AD=6cm,BC=18?,则EF的长为( )

A.8cm D.7cm C. 6cm D.5cm

7.如图,矩形纸片ABCD沿DF折叠后,点C落在AB上的E点,DE、DF三等分∠ADC,AB的长为6,则梯形ABCD的中位线长为( )

A.不能确定 B.2 C. D. +1

(20xx年浙江省宁波市中考题)

8.已知四边形ABCD和对角线AC、BD,顺次连结各边中点得四边形MNPQ,给出以下6个命题:

①若所得四边形MNPQ为矩形,则原四边形ABCD为菱形;

②若所得四边形MNPQ为菱形,则原四边形ABCD为矩形;

③若所得四边形MNPQ为矩形,则AC⊥BD;

④若所得四边形MNPQ为菱形,则AC=BD;

⑤若所得四边形MNPQ为矩形,则∠BAD=90°;

⑥若所得四边形MNPQ为菱形,则AB=AD.

以上命题中,正确的是( )

A.①② B.③④ C.③④⑤⑥ D.①②③④

(20xx年江苏省苏州市中考题)

9.如图,已知△ABC中,AD是 高,CE是中线,DC=BE,DG⊥CE,G为垂足.求证:(1)G 是CE的 中点;(2)∠B=2∠BCE.

(20xx年上海市中考题)

10.如图,已知在正方形ABCD中,E为DC上一点,连结BE,作CF⊥BE于P,交AD于F点,若恰好使得AP=AB,求证:E是DC的中点.

11.如图,在梯形ABCD中,AB∥CD,以AC、AD为边作平行四边形ACED,DC的延长线交BE于F.

(1)求证:EF=FB;

(2)S△BCE能否为S梯形ABCD的 ?若不能,说明理由;若能,求出AB与CD的关系.

12.如图,已知AG⊥BD,AF⊥CE,BD、CF分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为 .

(20xx年四川省竞赛题)

13.四边形ADCD的对角线AC、BD相交于点F,M、N分别为AB、CD中点,MN分别交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,则AC= .

(重庆市竞赛题)

1 4.四边形ABCD中,AD>BC,C、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于H、G,则∠AHE ∠BGE(填“>”或“=”或“

15.如图,在△ABC中,DC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于( )

A. B. C. D.

16.如图,正方形ABCD中,AB=8,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α,则CP的长是( )

A.1 D.2 C.3 D.

17.如图,已知A为DE的中点,设△DBC、△ABC、△EBC的面积分别为S1,S2,S3,则S1、S2、S3之间的关系式是( )

A. B. C. D.

18.如图,已知在△ABC中,D为AB的中点,分别延长CA、CB到E、F,使DE=DF,过E、F分别作CA、 CB的垂线,相交于点P.求证:∠PAE=∠PBF.

(20xx年全国初中数学联赛试题)

19.如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论.

(山东省竞赛题)

20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连结DE,设M为D正的中点.

(1)求证:MB=MC;

(2)设∠BAD=∠CAE,固定△ABD, 让Rt△ACE绕顶点A在平面内旋转到图乙的位置,试问:MB;MC是否还能成立?并证明其结论.

(江苏省竞赛题)

21.如图甲,平行四边形ABCD外有一条直线MN,过A、B、C、D4个顶点分别作MN的垂线AA1、BB1、CCl、DDl,垂足分别为Al、B1、Cl、D1.

(1)求证AA1+ CCl = BB1 +DDl;

(2)如图乙,直线MN向上移动,使点A与点B、C、D位于直线MN两侧,这时过A、B、C、D向直线MN引垂线,垂足分别为Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之间存在什么关系?

《【精选】平行四边形教案3篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式