
新人教版八年级数学教学反思
作为一名到岗不久的人民教师,我们的任务之一就是教学,借助教学反思我们可以学习到很多讲课技巧,教学反思要怎么写呢?下面是小编帮大家整理的新人教版八年级数学教学反思,希望对大家有所帮助。
新人教版八年级数学教学反思1一、教材处理
本节内容是轴对称相关知识的复习课,主要内容是复习轴对称及其基本性质,欣赏、体验轴对称在现实生活中的广泛应用。在此基础上,利用轴对称,探索回顾等腰三角形的性质,复习它的判定方法,并进一步复习等边三角形。
二、教法学法
整节课的安排,努力贯彻“学生为主体、教师为主导”的教育原则。教师只是对部分知识的`复习加以指导以及对整个教学流程加以控制,其余都让学生自己观察、思考;操作、联想;讨论、口述,这样将有利于每位学生积极动脑、动手、动口、耳闻、目睹,各种器官并用,使全体学生真正成为学习活动的主人。其中动手操作不仅适合二年级学生的年龄特征,更能激发学生的求知欲,使学生处于一种跃跃欲试的求知状态,从而创设良好的求知氛围,这样将有利于学生在教师的引导下去回顾与掌握所学知识。我认为,在经历了亲自探索、讨论交流、相互启迪的过程后,每位学生的自主意识、自主能力都将得到提高,最终将达到提高学生思维品质的教育目的。
新人教版八年级数学教学反思2我们常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这应该引起我们的反思了。诚然,出现上述情况涉及方方面面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。
孔子云:学而不思则罔。“罔”即迷惑而没有所得,把其意思引申一下,我们也就不难理解例题教学为什么要进行解后反思了。事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。本文拟从以下三个方面作些探究。
一、在解题的方法规律处反思
“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。
例如:(原例题)已知等腰三角形的腰长是4,底长为6;求周长。我们可以将此例题进行一题多变。
变式1已知等腰三角形一腰长为4,周长为14,求底边长。(这是考查逆向思维能力)
变式2已等腰三角形一边长为4;另一边长为6,求周长。(前两题相比,需要改变思维策略,进行分类讨论)
变式3已知等腰三角形的`一边长为3,另一边长为6,求周长。(显然“3只能为底”否则与三角形两边之和大于第三边相矛盾,这有利于培养学生思维严密性)
变式4 已知等腰三角形的腰长为x,求底边长y的取值范围。
变式5 已知等腰三角形的腰长为X,底边长为y,周长是14。请先写出二者的函数关系式,再在平面直角坐标内画出二者的图象。(与前面相比,要求又提高了,特别是对条件0﹤y﹤2x的理解运用,是完成此问的关键)
再比如:人教版初三几何中第93页例2和第107页例1分别用不同的方法解答,这是一题多解不可多得的素材(AB为⊙O的直径,C为⊙O上的一点,AD和过C点的切线互相垂直,垂足为D。求证:AC平分∠DAB)
通过例题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。
二,在学生易错处反思
学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错”。例题教学若能从此切入,进行解后反思,则往往能找到“病根”,进而对症下药,常能收到事半功倍的效果!
有这样一个曾刊载于《中小学数学》初中(教师)版20xx年第5期的案例:一位初一的老师在讲完负负得正的规则后,出了这样一道题:—3×(—4)= ?,A学生的答案是“9”,老师一看:错了!于是马上请B同学回答,这位同学的答案是“12”,老师便请他讲一讲算法:……,下课后听课的老师对给出错误的答案的学生进行访谈,那位学生说:站在—3这个点上,因为乘以—4,所以要沿着数轴向相反方向移动四次,每次移三格,故答案为9。他的答案的确错了,怎么错的?为什么会有这样的想法?又怎样纠正呢?如果我们的例题教学能抓住这一契机,并就此展开讨论、反思,无疑比讲十道、百道乃至更多的例题来巩固法则要好得多,而这一点恰恰容易被我们所忽视。
计算是初一代数的教学重点也是难点,如何把握这一重点,突破这一难点?各老师在例题教学方面可谓“千方百计”。例如在上完有关幂的性质,而进入下一阶段——单项式、多项式的乘除法时,笔者就设计了如下的两个例题:
(1)请分别指出(—2)2,—22,—2-2,2-2的意义;
(2)请辨析下列各式:
① a2+a2=a4
②a4÷a2=a4÷2=a2
③-a3 ·(-a)2 =(-a)3+2 =-a5
④(-a)0 ÷a3=0
⑤(a-2)3·a=a-2+3+1=a2
三、解后笔者便引导学生进行反思小结.
(1)计算常出现哪些方面的错误?
(2)出现这些错误的原因有哪些?
(3)怎样克服这些错误呢?
同学们各抒己见,针对各种“病因”开出了有效的“方子”。实践证明,这样的例题教学是成功的,学生在计算的准确率、计算的速度两个方面都有极大的提高。
新人教版八年级数学教学反思3对于数学课,我一直抱有这样的想法:让学生快乐地学数学,让学生自己去探索数学。所以这学期的开始,我找出一定的时间与孩子们聊天,讲我自己,讲教材,讲学习的方法,讲学习的态度。我相信每一个孩子都是希望学习的,并且希望通过学习获得知识与本领的。所以我对自己的教学充满期待,而孩子们对我也充满了期待。教学是很快乐的.事,和他们在一起,看到孩子们在学习的过程中不断地进步,是教学最大的成功。
我一直觉得一节好的数学课:由老师抛出一个问题(或由学生自己提出问题),然后经过真正意义上的讨论、验证、小组合作学习来主动地获取知识。一堂课下来老师讲的尽兴,学生学的有激情。 ……此处隐藏10037个字……
(1)一题多变
一题多变,有利于学生抓住问题的本质或者说是核心,从变化的'题目中抓住不变的东西———核心问题。本课的核心问题就是,平行四边形的判定方法的选择。
(2)一题多解
一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。本课中,典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。
(3)多题一法
本课从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。
新人教版八年级数学教学反思14本节的重点是:平行线的判定公理及两个判定定理。一般的定义与第一个判定定理是等价的。都可以做判定的方法。但平行线的定义不好用来判定两直线相交还是不相交。这样,有必要借助两条直线被第三条直线截成的角来判定。因此,这一个判定公理和两个判定定理就显得尤为重要了。它们是判断两直线平行的依据,也为下一节,学习平行线的性质打下了基础。 本节内容的难点是:理解由判定公理推出判定定理的证明过程。学生刚刚接触用演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解。有些同学甚至认为从直观图形即可辨认出的性质,没必要再进行证明。这些都使几何的入门教学困难重重。因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范。创设情境,不断渗透,使学生初步理解证明的步骤和基本方法,能根据所学知识在括号内填上恰当的公理或定理。 本节课的教学旨在对平行线的三种判定方法的巩固。
为此本课教学采取了以下措施:
1.重视复习的作用。
2.围绕重点练习巩固新知。
课堂练习安排了三道针对性很强的练习题:第1题既复习了角的平分线又应用了平行线的判定方法2,它也是今后学习判定等腰三角形的一个基本图形。第2题主要是让学生注意逻辑上的区别,而且这是学生容易出现错误判断的一个图形,教师在教学中应特别提醒学生其中的对应关系。第3题意在培养学生体验“有什么”,“根据什么”“得出什么”进行说理的过程。对于第3题教师对于学生出现不同的解题思路要有充分的准备,并积极加以引导。
3.引导学生对学习过程进行总结和反思,并能准确运用平行线的判定方法进行平行线判定的说理, 并进一步体会说理的规范表达。
这节课我比较满意的是:
1、对教学内容进行了合理、大胆的重组、加深,通过证明推理题、计算推理题对平行线的判定与性质进行了灵活的运用。注重学生的自己分析,启发学生用不同方法解决问题。探索直线平行的条件,实际上是“平行线的判定”老内容新教法,我的体会最深之一就是怎样让学生自主探索直线平行的'条件,这与以前的教学方法完全不同,我感觉这节课成功之处是:
引导学生参与整个探索过程使学生真正理解和掌握“同位角”的概念,并能够用自己的语言概括出“同位角相等,两直线平行”这一重要结论。 2、课堂上在与学生的对话和让学生回答问题时,有意识地锻炼学生使用规范性的几何语言。 3、注重由学生从临摹书写到自主书写,锻炼学生的动手能力。
这节课还需改进的是:
1、课堂的应变能力还需提高。对例三的研究时间过长,使后一阶段学生的思考时间较紧,由于时间关系,学生没有充分思考,虽然学生踊跃举手,但毕竟其他学生没有参与的机会。在今后备课中,继续要充分考虑到这一点。让学生在课堂上有更多的自主学习时间,让学生在实践活动中锻炼成长。
2、板书还要精心设计。
3、没有兼顾到学生的差异,如果在分析的环节不同层次的学生能够同伴互助,那么课堂的实效性将更充分体现。
4、认真备课。备知识:熟悉这节课的内容以及有关知识。备学生:既要因材施教更要因生施教,上好一节课不能只看老师在规定的时间完成了教学内容更重要的是学生通过这节课学会了什么,也就是不要看老师按时(45分钟)教了什么而是看学生到时学会了什么。学生学会了知识,掌握了知识才能说老师这节课是成功有效的教学。
反思是为了促进发展,反思是一种有思考的学习,是一种有理性的总结,可以提高教师教学教研的水平。今后每一节普通的课,都是我不断反省、审视自己,不断完善自己基本技能、提高教学水平的载体。
新人教版八年级数学教学反思15《分式的乘除法》这是八年级下册第十六章第二节的内容。主要学习的是分式的乘除法运算法则并会进行简单的应用。
本节课首先通过创设学生熟悉的问题情境,很自然的引入分式乘除法的运算:在运算律和运算法则的探究过程中,引导学生由分数的运算法则探究出分式的运算法则,利用练习加深理解:在分式的乘除运算教学过程中,从不同侧面引导学生巩固新知、提高计算能力。这节课重点是熟练掌握分式的乘除法则,教学设计提供给学生一个探索、思考与同伴交流合作的机会,学生通过对比观察,动脑思考对新旧知识进行联系探究,很自然地学习了新知识,本课设计充分体现了以学生为主体的教学方式,学生逐步探讨发现,通过学习既训练了猜想、归纳、表达能力,又提高了应变能力。
上完这节课后我认真的做了反思:
1、选取学生熟悉的`分数的乘除运算问题,用类比的思想方法学习归纳出分式乘除法的运算法则,学生感到轻松容易的掌握了分式乘除法的运算,激发了学生的学习兴趣。
2、针对本节课内容我设计一系列有梯度的问题,并采取讨论形式。课堂气氛活跃,学生学习热情比较高。课堂学习效果较好。
3、课堂训练过程中采取生生合作,学生出现的计算问题由学生改正并说明理由,一个没将问题找完,另一个再找,直到连细节学生也不放过。课本上有些问题的答案不唯一,学生从不同的角度考虑问题,结论当然不同,只要有道理就应鼓励,不要把学生限制在一个固定的思维框中。
4、存在的问题:(1)由于部分学生计算能力欠缺,或有些细节没注意到,计算上还出现问题。在以后的教学中还应加强计算能力的培养。(2)时间安排不是太恰当,学生帮助学生解决问题时耽误了一些时间,导致最后设计的环节没完成。以后还应加强细节的设置提高课堂效率。(3)学生答题的规范性还差了些,在黑板上的板书不到位,在以后的教学中加强学生的答题规范性练习。(4)数学学习方法的应用,本节课用到转化、猜想、归纳的数学方法,以后在教学中提醒学生数学方法的应用。
5、学生能力的培养,创设良好的问题情境,强化问题意识,激发学生的求知欲;培养学生敢于独立思考,敢于探索、敢于质疑的习惯;培养学生善于观察的习惯和心里品质;培养学生良好的思维习惯,教会学生在多方面思考问题,多角度解决问题的能力。
6、教学效果还有些欠缺,争取以后在课堂上让学生思维活跃,气氛热烈,学生受益面大,不同程度学生在原有的基础上都有进步。知识、能力、情感目标都能达到,让学生学的轻松,积极性高,当堂问题当堂解决。